

Mastering the nanoscale: approaches to nanomaterial localization, assembly and active control

Sasha Rakovich TCD, 15th of March 2024

Slides available here:

Physics@King's College London

Nanophotonics for bioapplications

- Plasmonic-based biosensing
- Optical control of analyte motion
- Nanomedicine & theranostics

Nanophotonics for clean energy and sustainability

- Biomimetic light harvesting
- Plasmo-catalysis
- Sustainable fabrication methods

Nanomaterials assembly and control

- Self-assembly
- Specific localization
- Control of nanoparticle motion

Why colloidal nanomaterials?

Bottom-up

Top-down

Material Properties

- Electronics
- Biomedical
- "Synthesis and Functionalization of Nanomaterials", N. Kumar, S. S. Ray, Springer

• Agriculture

Materials for sport

Considerations

- Material systems / sizes
- Scalability of fabrication
- Cost of fabrication & precursors

Fabrication of nanomaterials

- Reproducibility
- Pre-determined localization
- Compatibility with pre-existing structures

Material immobilization toolbox

Evaporation

Long-range attractive forces

Intermolecular forces

Other driving forces

- Electrostatic
- (Di-)electrophoretic
- **Brownian motion**
- Gravity
- Optical
- Convective
- Capillary

Typically more than type contributes

Intramolecular forces

Force	Model	Basis of Attraction	
Intramolecular Ionic	888	Cation-anion	
Covalent	000	Nuclei-shared e pair	
Metallic	000	Cations-delocalized electrons	
	000		

cscsdashaicechem.weebly.com

Kuby Immunology. Ed. J.A. Owen, J. Punt, S.A. Stranford. 7th edition, W. H. Freeman and company, New York (2013)

Introduction

Self-assembly Nano-bio hybrids **Superclusters**

Localization 2-step EBL Template dissolution

Active control Brownian ratchets

Conclusions

Introduction Control of nanomaterials for applications

Self-assembled systems

Nano-bio hybrids Plasmonic superclusters

Deterministic localization of NPs

QDs coupling to plasmonic structures Large area localization of metallic NPs

Active control of NPs

Exploiting Brownian motion for long range transport

Conclusions

Introduction

Self-assembly

Nano-bio hybrids Superclusters

Localization 2-step EBL Template dissolution

Active control Brownian ratchets

Self-assembly

https://www.intechopen.com/books/carbohydrate/self-assembledmonolayers-of-carbohydrate-derivatives-on-gold-surfaces

Introduction

Self-assembly

Nano-bio hybrids Superclusters

Localization 2-step EBL Template dissolution

Active control Brownian ratchets

Self-assembly of nano-bio hybrids

King's London

Introduction

Self-assembly

Superclusters

Localization

2-step EBL

Template

dissolution

Active control

Conclusions

Brownian

ratchets

Nano-bio

hybrids

Membrane protein with:

- Photoelectric properties
- Photochromic properties
- Charge transport properties

Performance optimised by evolution:

- High photo- chemical and thermal stability
- High fatigue resistance

Not able to deal with UV-photons:

- Can destroy light-absorbing molecule
- Utilizes only 0.1-0.5% of solar light

Use QDs as artificial downconverting LH antenna

Electrostatic self-assembly of QDs on Purple and White Membranes

6 nm hydrodynamic radius QDs **bR** membrane Self-assembly Superclusters Localization 2-step EBL 15 nm 15 nm 6.09 nm 0.7 6.09 nm 6.2 nm 2.5 0.6 10 2.0 0.5 Active control (mu) z 1.0 (mu) z 0.3 2 (nm) Z (nm) 0.2 0.5 0.1 0.0 0.0 Conclusions 10 X (nm) 0 5 15 20 10 15 0 5 0 5 10 15 20 25 X (nm) X (nm)

Typical, high density

Introduction

Nano-bio

Template dissolution

Brownian

ratchets

hybrids

NanoLetters 10, 2640 (2010) 11

Introduction

Self-assembly

Superclusters

Localization

2-step EBL

Template

dissolution

Active control

Conclusions

Brownian

ratchets

Nano-bio

hybrids

A. Rakovich et al., NanoLetters 10, 2640 (2010)

Self-assembly of metallic superclusters

Properties of metallic superclusters

1.2

1

0.2

0

400

Superclusters of metallic nanoparticles

V. A. Turek et al. ACS Photonics 3, 35-42 (2016)

Experimental verification of collective modes

TEM: cluster size

Raman: modal map

4-MBA self-assembled onto Au NPs prior to supercluster formation

V. A. Turek et al. ACS Photonics 3, 35-42 (2016); A. Lauri et al. ACS Photonics 4, 2070-2077 (2017) 15

Introduction

Self-assembly Nano-bio hybrids Superclusters

Localization 2-step EBL Template dissolution

Active control Brownian ratchets

Sensing with metallic superclusters

causing de-/re-protonation of carboxylic acid group on the 4-MBA molecule

D

0.5

-0.5

-1

 $x[\mu m]$

 $y[\mu m]$

Introduction

Self-assembly Nano-bio hybrids Superclusters

Localization 2-step EBL Template dissolution

Active control Brownian ratchets

Tendency towards interdisciplinary science

• Exploit properties of different materials

Drive for device minimisation & integration

- Avoid cross-talk of different components
- Nanoscale control of materials

Independent design of components

- Time-efficiency
- Collaborative efforts

Reproducibility of performance

- Chemo- & photo- stability of components
- Reproducible characteristics

Introduction

Self-assembly

Nano-bio hybrids Superclusters

Localization 2-step EBL Template dissolution

Active control Brownian

ratchets

Conclusions

Selective localization methods

Technique	Advantages	Disadvantages	Dip-pen lithography	Introduction
Directed self-	• Fast	Weak adhesion	AFM Tip	
assembly	Large area coverageWorks on almost any substrate	• Use of non-removable masks	D. S. Ginger <i>et al.</i> Ang Chem Int Ed 43, 30-45 (2004)	Self-assembly
SAM patterning	Good precision	SAM covers entire substrateSlow due to large area exposure	Molecular transport	" Nano-bio
MACE-ID	 Good control over amount deposited OK precision 	 Precursor in EBL chamber Use of additional material as scaffolding (no functional purpose) 	Water meniscus	Superclusters
Multi-step EBL	OK precisionVery flexible	• Use of masks (can leave residues)	Au substrate	Localization
AFM-based techniques	High precision	 Slow and labour intensive SAM cover entire substrate Difficult to do on samples with pre- existing structures 	Light-activated molecular	2-step EBL Template
Localised polymerization	High precisionNo mask	 Deposition of additional material (polymer matrix) Only works with resonator structures 	immobilization (LAMI)- streptavidin-coated based approach	Active control
LAMI-based approach	Very high precision"In-built" localisationNo mask	 Low yield No mask: non-specific attachment can be an issue Only works with plasmonic structures 	(b)	Brownian ratchets
Hot-carrier driven chemistry	 High precision "In-built" localisation No mask 	 Chemistry difficult to control Localisation not only in hotspot Only works with plasmonic structures 	biotin-BSA	Conclusions
Optical printing	 Moderate precision No mask Very strong attachment 	 Labour intensive Difficult to do with pre-existing structures Functionalisation of entire substrate 	C.M. Galloway <i>et al.</i>	

Deterministic localization methods

Introduction

Localization 2-step EBL Template dissolution

Active control Brownian ratchets

Conclusions

Zhou, Nano Lett. 15, 7458-7466 (2015)

Jacobs, Chem. Sci. 5, 1680 (2014) Puchner, NanoLetters 8, 3692-3695 (2008)

W. Slingenbergh, ACS Nano 6, 9214 (2012)

2-step EBL method

For localization of QDs in regions of interest near pre-existing structures

Step 2: selective localisation of NPs

For characterization of SOI gap plasmon waveguides

Cut-back method:

- Requires many sacrificial structures
- Measures propagation length
- Does not reveal mode location

Use selectively deposited SQDs!

Introduction

Self-assembly

Nano-bio hybrids Superclusters

Localization 2-step EBL Template dissolution

Active control Brownian ratchets

For characterization of SOI gap plasmon waveguides

Characterization of a single sacrificial structure:

- Direct measurement of propagation length from TPE data
- Direct confirmation of "nanosqueezing" of light

10

20

υ

ropagation

Length [µm]

100

Ō

EF

Introduction

Self-assembly

Nano-bio hybrids **Superclusters**

Localization 2-step EBL

Template dissolution

Active control Brownian ratchets

For deterministic control of radiative properties of QDs via exciton-plasmon coupling

Plasmonic nanoantennas' performance depends on:

- Antenna shape & size
- Material from which it is made
- Dimension of gaps (if present)

Nature Comm. 5, 4427(2014)

Colloidal QDs:

- Distribution of sizes $(=\lambda_{em})$ in a sample
- Blinking behaviour on a few/single QD level
- Blue-shifts and shortening of lifetime at high excitation intensities

Introduction

Self-assembly

Nano-bio hybrids Superclusters

Localization 2-step EBL Template dissolution

Active control Brownian ratchets

For deterministic control of radiative properties of QDs via exciton-plasmon coupling

Selectively deposited colloidal QDs inside plasmonic ring cavities

QD ring

800

200

0

400

X (nm)

600

0 nm

Primary aminefunctionalised substrate $H_{2}N$ $H_{2}N$

Introduction

Self-assembly

Superclusters

Localization

2-step EBL

Template

dissolution

Active control

Conclusions

Brownian

ratchets

Nano-bio

hybrids

A. Rakovich et al. ACS Nano 9, 2648-2658 (2015)

For deterministic control of radiative properties of QDs via exciton-plasmon coupling

QD-PRC coupling

- Varied QD-PRC separation by increasing radius of QD ring
- Dimensions of PRC kept constant (D440t60)
- Strong change in radiative rates
- Good agreement with FDTD calculations

25

Introduction

Self-assembly

Nano-bio hybrids Superclusters

Localization 2-step EBL Template

dissolution

Active control

Brownian ratchets

Going big!

King's London

Large-area printing & deposition techniques

Linhan Lin et al. Materials Today 28, 49-62 (2019) Julian Gargiulo et al. NanoLetters 16, 1224-1229 (2016)

Large-area immobilization of Au NPs arrays

J.B. Lee et al., ACS Nano 2020, 14, 17693

Large-area immobilization of Au NPs arrays

Printing accuracy and yield

Introduction

Self-assembly

Nano-bio hybrids Superclusters

Localization 2-step EBL Template dissolution

Active control Brownian ratchets

Conclusions

28

J.B. Lee et al., ACS Nano 2020, 14, 17693

Large-area immobilization of Au NPs arrays

Printing on different substrates

- Assembly conditions depend on NP and substrate type
- Works for any substrate not soluble in acetone
- Can be used with pre-existing structures

Hot-electron detection

via an introduction of a tunnelling junction

In collaboration with LMU, ICL, KAIST, SUST J.B. Lee et al., ACS Nano 2020, 14, 17693

Introduction

Self-assembly

Nano-bio hybrids Superclusters

Localization 2-step EBL Template dissolution

Active control Brownian ratchets

Conclusions

Active control of colloidal nanoparticles

In aqueous environments

Active control can enable

- Particle sorting
- Temporary/permanent concentration of samples
- Delivery of test materials to sensing areas

Allowing

- Lower LODs in sensing schemes
- In-situ measurements ranging from on singleparticle level to ensemble level on same sample

Various forces can be utilized

Have different action ranges

Introduction

Self-assembly

Nano-bio hybrids Superclusters

Short range - TRAPPING <100 nm

Medium range few µms

> Long range – DIFFUSION >mm CONTROL

Localization 2-step EBL Template dissolution

Active control

Brownian ratchets

Active control of colloidal nanoparticles

Electrophoresis, 32 2307 (2011)

Control of nanoparticle motion in solution using SLMs

32

modulating wavelength / polarization

Active control of colloidal nanoparticles

In aqueous environments

Active control can enable

- Particle sorting
- Temporary/permanent concentration of samples
- Delivery of test materials to sensing areas

Allowing

- Lower LODs in sensing schemes
- In-situ measurements ranging from on singleparticle level to ensemble level on same sample

Various forces can be utilized

Have different action ranges

Introduction

Self-assembly

Nano-bio hybrids Superclusters

Short range - TRAPPING <100 nm

Medium range few µms

> Long range – DIFFUSION >mm CONTROL

Localization 2-step EBL Template dissolution

Active control

Brownian ratchets

Brownian motion

- Stochastic process resulting in random motion
- Mean Square displacement for an ensemble:

$$\left\langle (x_t - x_0)^2 \right\rangle = 2Dt$$

where *D* is the diffusion coefficient:

$$D = \frac{k_B T}{\gamma}, \ \gamma = 6\pi\eta a$$

Particle diffusion in presence of a potential

- Additional forces are exerted on particles
- Brownian motion "adds" thermal noise

Can exploit this noise for long range transport!

Introduction

Self-assembly

Nano-bio hybrids Superclusters

Localization 2-step EBL Template dissolution

Active control Brownian ratchets

Rectification of Brownian motion

Can use any type of potential as long as it is switchable

Optimum time to keep the potential off:

Introduction

Self-assembly Nano-bio hybrids Superclusters

Localization 2-step EBL Template dissolution

Active control Brownian ratchets

Plasmonic Brownian ratchets

Advantages

- Easily designed / fabricated \geq
- Asymmetries easy to implement
- Reduced power requirements \geq
- Simple implementation

Ratchet design

- \succ Strong resonance at target λ
- > Asymmetric potential profile

Nano-bio

2-step EBL

Template

dissolution

Brownian

ratchets

hybrids

Experimental implementation of plasmonic Brownian ratchets

-

worms when

- Max power used 2.5 kW/cm²
- Chopping: 50/50 duty cycle \geq
- Adjustable frequency \geq

Aqueous solutions of various NPs \geq

	Polystyrene (40 nm)	Polystyrene (200 nm)	PTB7 (180 nm)
$\langle v_{\chi} \rangle$	0.14 μm/s	0.12 μm/s	0.15 μm/s
$\langle v_y \rangle$	2.37 μm/s	1.55 μm/s	1.84 μm/s

Introduction

- Self-assembly Nano-bio hybrids **Superclusters**
- Localization 2-step EBL Template dissolution

Active control Brownian ratchets

Polystyrene spheres, 40 nm diameter

Other sizes/materials

Introduction

Self-assembly Nano-bio hybrids Superclusters

Localization 2-step EBL Template dissolution

Active control Brownian ratchets

Conclusions

Comparison to other optically-driven Brownian ratchets

Optical ratchets

Near-Field, On-Chip Optical Brownian Ratchets

Shao-Hua Wu, Ningfeng Huang, Eric Jaquay, and Michelle L. Povinelli*

Ming Hsieh Department of Electrical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California 90089, United States

Our plasmonic ratchets -------X 2,5 2,0 Velocity (µm/s) 1'2 0,5 0,0 2

Average speed ~ 2.5 μ m/s Incident power ~2 kW/cm² = 0.2 W/m² Analytes = \emptyset 40-200 nm polymer spheres

Intensity (kW/cm²)

Superclusters

Introduction

Localization 2-step EBL Template dissolution

Active control Brownian ratchets

People: Select main contributors

Marciano Palma do Carmo (KCL, UK) Dr. Paloma Huidobro-Arroyo (UAM, Spain) Dr. Alberto Lauri (ICL, UK*) Dr. Michael Nielsen (UNSW Sydney, Australia) Dr. Emiliano Cortes (LMU, Germany) Prof. Igor Nabiev (URCA, France) Dr. Pablo Albella (University of Cantabria, Spain) Dr Francisco Rodríguez Fortuño (KCL, UK) Prof. Alexander Govorov (Ohio University, USA) Dr. Mikhail Artemyev (BSU, Belarus) Dr. Nikolai Gaponik (TUD, Germany) Prof. Stefan Maier (Monash University, Australia)

References:

<u>QD as artificial LH antenna for RCs</u> Angew. Chem. Int. Ed. 49, 7217 (2010)

QD as artificial LH antenna for bR protein NanoLett. 10, 2640 (2010)

Superclusters of metallic nanoparticles ACS Photonics 4, 2070-2077 (2017)

QD as probes for waveguide characterization NanoLett. 16, 1410-1414 (2016)

<u>QDs-Plasmonic Ring Cavities coupling</u> ACS Nano 9, 2648-2658 (2015)

Template dissolution method ACS Nano 14, 17693 (2020)

Contact:

aliaksandra.rakovic@kcl.ac.uk http://nanobiophotonics-group.com/

Introduction

Self-assembly

Nano-bio hybrids Superclusters

Localization 2-step EBL Template dissolution

Active control Brownian ratchets

Thank you for your attention!

